
On the Root Causes of Cross-Application I/O Interference in HPC Storage Systems

Orcun Yildiz∗, Matthieu Dorier†, Shadi Ibrahim∗, Rob Ross†, and Gabriel Antoniu∗
∗INRIA Rennes Bretagne-Atlantique, Rennes, France, {first.last}@inria.fr
†Argonne National Laboratory, IL 60439, USA, {mdorier, rross}@anl.gov

Abstract—As we move toward the exascale era, performance
variability in HPC systems remains a challenge. I/O inter-
ference, a major cause of this variability, is becoming more
important every day with the growing number of concurrent
applications that share larger machines. Earlier research efforts
on mitigating I/O interference focus on a single potential cause
of interference (e.g., the network). Yet the root causes of I/O
interference can be diverse. In this work, we conduct an
extensive experimental campaign to explore the various root
causes of I/O interference in HPC storage systems. We use
microbenchmarks on the Grid’5000 testbed to evaluate how
the applications’ access pattern, the network components, the
file system’s configuration, and the backend storage devices
influence I/O interference. Our studies reveal that in many
situations interference is a result of bad flow control in the
I/O path, rather than being caused by some single bottleneck
in one of its components. We further show that interference-
free behavior is not necessarily a sign of optimal performance.
To the best of our knowledge, our work provides the first
deep insight into the role of each of the potential root causes
of interference and their interplay. Our findings can help
developers and platform owners improve I/O performance and
motivate further research addressing the problem across all
components of the I/O stack.

Keywords-Exascale I/O, Parallel File Systems, Cross-
Application Contention, Interference

I. INTRODUCTION

I/O interference in high-performance computing (HPC)
is defined as the performance degradation observed by any
single application performing I/O in contention with other
applications running on the same platform. This interfer-
ence, while already present in small clusters, becomes an
increasingly important issue as we move closer to exascale,
first because larger machines are used by more applications
at the same time [1] and second because uncontrolled I/O
performance degradations in large-scale applications lead to
a larger waste of computation time and energy. Because of
the variety of access patterns exhibited by HPC applications,
however, it is difficult to predict when this interference
will occur and whether and how it will affect each of the
applications involved.

For several years researchers have been tackling cross-
application I/O interference in the HPC area. The focus has
been on causes as diverse as access locality in disks [2],
synchronization across storage servers [2], [3], or network
contention [4]–[7]. While these solutions get us undeniably
closer to solving the I/O interference problem, they all focus

on a single potential root cause of interference (e.g., the
network) and do not look at the interplay between several
potential such causes.

In this paper, we conduct an extensive experimental
campaign exploring the root causes of I/O interference in
HPC storage systems. We use microbenchmarks on the
Grid’5000 [8] testbed to evaluate how the applications’
access pattern, the network components, the file system’s
configuration, and the backend storage devices influence
interference. While some of our results follow our intuition,
others illustrate unexpected behaviors caused by the inter-
play between different points of contention. These surprising
behaviors include the fact that decreasing the network band-
width can in some cases eliminate the interference.

An important outcome of our study is that in many
situations, interference is a result of bad flow control in the
I/O path, rather than the presence of a single bottleneck
in one of its components. We hope that the insights and
lessons learned from our experiments will enable a better
understanding of I/O interference, help platform administra-
tors diagnose the cause of such issues in their system, and
motivate further research addressing the problem, not only
at a single level, but also across all components of the I/O
stack potentially involved.

The remainder of this paper is organized as follows.
Section II gives background for our work. Section III ex-
plains our methodology in investigating the root causes of
I/O interference, including a description of the benchmark,
platform, and software. Section IV presents different sets
of experiments highlighting the different causes of I/O
interference and then shows cases where it produces unex-
pectedly high performance degradation. All the experiments
are accompanied by lessons learned from the behavior of the
system in these scenarios. In Section V we present related
work. We conclude in Section VI with a summary and a
brief look at future work.

II. BACKGROUND

In the context of I/O for HPC, the main shared resource
that applications contend for is the parallel file system, which
comprises components that can all become a point of con-
tention. By considering the design of common HPC storage
systems, we identified four potential points of contention in
the data path, illustrated in Figure 1.

Figure 1. Typical parallel storage system and potential points of contention.

1) As the number of cores per node increases, the network
interface shared by all the cores in a node can become a
first point of contention [9], [10]. Failure to address this
first bottleneck at a single-application level can affect
the interference encountered with other applications
farther down the I/O path.

2) The network linking computation nodes to storage
servers (which we will call “storage network,” as
opposed to the “computation network” used across
computation nodes, and which may be different) is
usually the first point of contention between multiple,
independent applications.

3) The servers running the parallel file system constitute
a third possible cause of cross-application interference,
because of the limited bandwidth each server provides
and because of scheduling decisions being made at this
level regarding the order in which I/O requests should
be serviced [2]–[4].

4) The disks (or any other backend storage devices) con-
stitute the lowest level at which contention can occur.
While the servers serialize requests into actual disk ac-
cesses, interleaved requests from different applications
can break the locality of disk accesses and degrade
performance [11].

Other possible sources of interference include I/O for-
warding nodes [12]–[14], RAID technology used in backend
storage devices, or the computation network. The platform
we use for our experiments does not feature forwarding
nodes or RAID technology; and while the computation and
storage networks are the same, our benchmark does not
perform communications. Thus we will not investigate these
potential sources here.

III. METHODOLOGY

Investigating the root causes of I/O interference is a chal-
lenging task given the complexity of HPC storage systems
and the large number of parameters that can contribute

to interference. In the previous section, we identified the
potential points of contention in the data path. Here we
describe our methodology for investigating these parameters
in order to draw meaningful and useful conclusions from our
experiments.

A. Role of each point of contention

One way of studying the effect of potential points of
contention consists of carefully isolating each of them and
benchmarking them separately. This is not the approach we
undertake here. This approach indeed does not capture the
interplay between causes, such as the fact that contention at
one level can either mitigate or exacerbate interference at
another level.

Our approach consists of either ruling out potential causes
of interference or modifying their parameters and observing
the resulting performance under congestion. This approach
has proved much more useful not only in understanding the
role of each point of contention but also in evaluating their
interactions. More specifically we proceed as follows for
each level.

1) The network interface can be ruled out by making a
single core on each node issue all the I/O requests of
that node.

2) While the network can be ruled out by having clients
run on the same node along with a single-server file
system, this option gives us little information about the
role of the network in a large, multiserver deployment
of the file system. We therefore evaluate the impact of
the network’s bandwidth on the interference as well.

3) The servers can be ruled out by ensuring that each
group of processes accesses a distinct set of servers.
In this scenario the two groups will interfere at the
network level but not in the servers or for the access
to the disks.

4) The disks can be ruled out by using much faster devices
such as SSDs or local memory or by asking the file sys-
tem to throw away any incoming data instead of storing
it. Another option is to turn off the synchronization of
data files in the file system, which allows the servers
to keep data cached in memory and flush them to disks
later. We use these two methods in our experiments.

B. Microbenchmark and reporting method

To investigate the influence of various parameters on the
I/O interference, we follow the methodology used in [1].
We developed a microbenchmark similar to IOR [15]. This
application starts by splitting MPI_COMM_WORLD into two
groups of processes running on two separate sets of nodes.
Each group of processes executes a series of collective
I/O operations following a specified pattern, simulating two
applications accessing the file system in contention. We
measure the time taken by each group of processes to
complete its set of I/O operations.

The experiments presented in this paper focus on
write/write interference only. They use two different access
patterns.

Contiguous In this pattern, each process issues a 64 MB
write request in a contiguous way in a shared file, at
an offset given by rank × 64MB.

Strided We represent the noncontiguous case by a one-
dimensional strided access pattern. Each process issues
256 requests of size 256 KB each.

Our experimental evaluation leverages the concept of ∆-
graphs introduced in [1]. For a given configuration of the
platform and the microbenchmark, we introduce a delay ∆
between the beginning of the I/O burst of the first group of
processes and the beginning of the I/O burst of the second
group. We then plot the time to complete an I/O phase as a
function of ∆.

We note that ∆-graphs do not represent timelines; each
point in a ∆-graph represents a single experiment.

C. Platform description

The experiments were carried out on the Grid’5000 [8]
testbed. We used the Rennes site; more specifically we
employed nodes belonging to the parasilo and paravance
clusters. The nodes in these clusters are outfitted with two
8-core Intel Xeon 2.4 GHz CPUs and 128 GB of RAM.
We leverage the 10 Gbps Ethernet network that connects all
nodes of these two clusters. Reserving these two clusters
and deploying our own file system ensured that we were the
only users of the network switch as well as the file system
at the time of the experiments.

The OrangeFS file system (a branch of PVFS2 [16])
version 2.8.3 was deployed on 12 nodes of the parasilo
cluster. We considered two types of configuration: “Sync
ON” and “Sync OFF,” which represent whether each request
is immediately flushed to the backend storage devices or
whether data can stay in kernel-provided buffers, respec-
tively.

We use 60 nodes (960 cores) to run our microbenchmark
on the paravance cluster, unless otherwise specified. These
cores will always be split into two groups of equal size (30
nodes) and follow the same type of access pattern.

IV. DISCUSSIONS OF EXPERIMENTAL RESULTS

This section presents the results of our investigation. The
first part explores the role that each of the components
presented above has in the I/O interference. The second
part explains further some of the results, in particular the
counterintuitive ones, and highlights a flow-control issue at
the core of the interplay between components.

A. Insight into the root causes of I/O interference

We discuss several possible causes for I/O interference.

Device Alone Interfering Slowdown
HDD, sync ON 13.4 sec 33.4 sec 2.49×

SSD 2.27 sec 4.46 sec 1.96×
RAM 1.32 sec 2.09 sec 1.58×

Table I. Time taken by an application running on one core to write 2 GB
locally using a contiguous pattern, alone and in the presence of another
application performing the same access to another file at the same moment.

1) Influence of the backend storage device: To investigate
the I/O interference caused by the storage backend (i.e., disk-
level interference), we ran our microbenchmark on the same
node as the file system, with the file system deployed on
this node only. This removes the network from the factors
contributing to the interference and highlights disk-level
interference. Each application consists of a single client
writing 2 GB contiguously in a file (one file for each client).
Table I shows the resulting write time and slowdown for
different storage backends: HDD, SSD, and RAM.

We confirm that the use of hard disks leads to an impor-
tant relative performance degradation in the presence of
contention. This interference, less present when using
SSDs or local memory, may stem from the additional
disk-head movements produced by interleaved requests
to distinct data files.

Figures 2 and 3 complement our study of interference
at the level of backend storage devices, this time with real
parallel applications and file system. In both figures, two
applications of the same size (480 cores each) write 64 MB
per process, in a contiguous pattern in Figure 2 and in a
strided pattern in Figure 3.

As we expect, local memory and SSDs perform better than
hard disks. In terms of interference, however, the slowdown
is equivalent (up to 2×) regardless of the storage backend
for a contiguous pattern.

The contiguous scenario with synchronization enabled
(Figures 2(a) and 2(b)) shows an interesting result: when
using HDDs (and to some extent SSDs), the graph becomes
asymmetrical. That is, the first application entering an
I/O phase gets better performance than does the second,
although their I/O patterns are the same. Such unfair in-
terference behavior will appear again in other scenarios
throughout this section and will be further explained in
Section IV-B.

Experiments with a strided access pattern and sync en-
abled show that local memory and SSDs have a lower
interference factor compared with that of HDDs. This dif-
ferent behavior stems from the greater tolerance of local
memory and SSDs to random accesses produced not only
by interleaved requests from distinct applications but also
by the strided patterns of the applications themselves.

When the synchronization is disabled, we do not observe
any significant difference in terms of performance and

 0

 10

 20

 30

 40

 50

 60

 70

 80

-40 -30 -20 -10 0 10 20 30 40

W
ri
te

 T
im

e
 (

s
)

dt (s)

Disk
SSD
RAM

(a) Sync ON (write time)

 0

 0.5

 1

 1.5

 2

 2.5

-40 -30 -20 -10 0 10 20 30 40

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

Disk
SSD
RAM

(b) Sync ON (slowdown)

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

-10 -8 -6 -4 -2 0 2 4 6 8 10

W
ri
te

 T
im

e
 (

s
)

dt (s)

Disk
SSD
RAM

Null-aio

(c) Sync OFF (write time)

 0

 0.5

 1

 1.5

 2

-10 -8 -6 -4 -2 0 2 4 6 8 10

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

Disk
SSD
RAM

Null-aio

(d) Sync OFF (slowdown)

Figure 2. Two applications of the same size (480 cores each) write
64 MB per process using a contiguous pattern. We show how the application
behaves for the different storage characteristics: disk, SSD, and RAM. Sync
is enabled in (a) and (b) and disabled in (c) and (d). (c) and (d) also display
the null-aio method for performing I/O, which simply does no disk I/O at
all.

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

-600 -400 -200 0 200 400 600

W
ri
te

 T
im

e
 (

s
)

dt (s)

Disk

(a) HDD, Sync ON (write time)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

-600 -400 -200 0 200 400 600

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

Disk

(b) HDD, Sync ON (slowdown)

 30

 35

 40

 45

 50

 55

 60

 65

 70

-40 -30 -20 -10 0 10 20 30 40

W
ri
te

 T
im

e
 (

s
)

dt (s)

SSD
RAM

(c) Others, Sync ON (write time)

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

-40 -30 -20 -10 0 10 20 30 40

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

SSD
RAM

(d) Others, Sync ON (slowdown)

 30

 35

 40

 45

 50

 55

 60

 65

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

Disk
SSD
RAM

(e) Sync OFF (write time)

 0

 0.5

 1

 1.5

 2

-40 -30 -20 -10 0 10 20 30 40

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

Disk
SSD
RAM

(f) Sync OFF (slowdown)

Figure 3. Two applications of the same size (480 cores each) write 64 MB
of data per process to PVFS using a strided pattern. Due to the large write
time when using hard disks and synchronization is enabled, we separated
the figures for HDDs and other devices. For brevity, only 1 application is
shown since both applications have the same size and behavior).

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

1 client per node
16 clients per node

Figure 4. Two applications of
the same size (480 cores) write
data to PVFS using a contiguous
pattern. We show the ∆−graph
when all cores participate by
writing 64 MB blocks (16 clients
per node) and when a single
client per node writes 16 blocks
of 64 MB.

interference for both access patterns. This is expected since
the amount of the generated data is small enough to stay in
the local memory when the synchronization is disabled.

Depending on the type of storage device, the access
pattern may have an influence on the I/O interference
behavior. While the peak interference factor is almost
equal for all storage devices with a contiguous pattern,
a strided pattern leads to higher interference in HDDs.

Given the regularity and symmetry of the ∆-graph with
HDD and synchronization enabled (perfectly triangular fig-
ure with an exactly 2× slowdown when both applications
start at the same time), we hypothesize that while in these
conditions the hard disks are the points of contention, other
backends are fast enough to deal with the congestion, and the
slowdown observed in these situations comes from another
component, such as the network. This could explain the
asymmetry in those cases. This hypothesis will be examined
in the following two sections.

2) Influence of the network interface: The network in-
terface in increasingly multicore nodes is already a limiting
factor to single-application I/O performance. We explored
its role in cross-application interference. Figure 4 illustrates
two scenarios: one in which all cores write 64 MB and one
in which one core per node performs an equivalent amount
of I/O (16× 64 MB).

We note that, as expected, the performance without inter-
ference is improved by using a single core per node instead
of all the cores. This result is in line with the results of our
related work focusing on dedicated I/O cores [10].

In terms of interference, having all the cores perform I/O
not only produces more interference but also leads to unfair-
ness. Indeed the interference pattern observed in Figure 4
with 16 writers per node is asymmetrical, which shows that
the first application entering an I/O burst performs better
than the one that follows it.

While it was already known that fewer writers per
multicore nodes (e.g., aggregators or dedicated I/O
processes) improve the I/O performance of a single
application, we have shown here that this approach also
lowers cross-application interference.

3) Influence of the network: We can hardly rule out the
network from the HPC system because it provides the link
between the computation and the storage nodes. Hence, we

 35

 40

 45

 50

 55

 60

 65

 70

 75

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

1 G Ethernet
10 G Ethernet

(a) Sync ON

 5

 6

 7

 8

 9

 10

 11

 12

-15 -10 -5 0 5 10 15

W
ri
te

 T
im

e
 (

s
)

dt (s)

1 G Ethernet
10 G Ethernet

(b) Sync OFF

Figure 5. Two applications of the same size (480 cores each) write 64 MB
per process using a contiguous pattern. Sync is enabled in (a) and disabled
in the (b). We show the ∆−graph when the network bandwidth is 10 G
(default) and adjusted to the 1 G Ethernet.

highlighted its role by decreasing the network bandwidth
from 10 G to 1 G. Figure 5 shows the results for the different
network bandwidths, with two applications writing in a
contiguous pattern. Surprisingly, we discover that having a
higher network bandwidth neither significantly improves the
applications’ I/O performance nor helps eliminate the inter-
ference. On the contrary, limiting the network bandwidth to
1 G helped eliminate the interference when synchronization
was disabled in the disks, as shown in Figure 5(b), and
helped regain a symmetrical (fair) interference behavior
when synchronization was enabled, as shown in Figure 5(a).

In Figure 5(a), the peak write time in the presence of
contention is the same whether we use a 10 G or a 1 G
network. The reason is that the performance of the I/O path
here is limited by the backend storage devices (HDDs). In
Figure 5(b), the data is not synchronized to disks right away
when reaching storage servers but stays in buffers. Hence,
the network becomes the limiting factor.

The flat ∆-graph observed with a 1 G network stems
from the fact that the network is limiting the rate at which
each application sends requests to the file system, producing
an interference-free behavior. Interesting is the fact that the
resulting write time is in some cases smaller than when using
a 10 G network, which hints that constraining the rate at
which each application can send data is a valid solution for
mitigating interference.

The fairness regained in Figure 5(a), resulting from the
interplay between the storage devices and the network, will
be further explained in Section IV-B.

Counterintuitively, a lower network bandwidth may
not cause higher interference. On the contrary, it can
prevent interference if none of the other components
are subject to contention.

4) Influence of the number of storage servers: Intuitively
and assuming the network is not a point of contention, using
more storage servers increases the aggregate throughput that
any single application can achieve. This situation is demon-
strated by the maximum throughput achieved in Figure 6(a).
In terms of interference, however, it is not clear whether

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

Number of Servers

Min
Max

(a) Scaling

 0

 2

 4

 6

 8

 10

-10 -5 0 5 10

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

dt (s)

4 PVFS servers
8 PVFS servers

12 PVFS servers
24 PVFS servers

(b) ∆-graph

Figure 6. Two applications of the same size write data to the PVFS using
a contiguous pattern. Figure (a) shows the maximum throughput achieved
(when the application is alone) and the minimum (in contention) as a
function of the number of servers. Figure (b) shows the throughput for
one of the applications in a ∆-graph, that is, as a function of the delay
between applications.

Number of Servers Interference Factor
4 2.22
8 2.28

12 2.07
24 2.00

Table II. Peak interference factor observed by the application for different
numbers of storage servers.

more servers will mitigate the interference.
We therefore investigated the role of the number of servers

on the interference by deploying PVFS on 24, 12, 8, and
4 nodes with synchronization turned off. Each client writes
64 MB in a contiguous pattern for the first three deployments
and writes 32 MB with 4 PVFS servers because of its lower
capacity. Figure 6(b) shows the observed throughput for
one of the applications depending on the number of PVFS
servers used and on ∆. As expected, increasing the number
of servers improves the throughput, but it cannot eliminate
the interference. I/O interference still exists because each
server still has the same number of clients regardless of the
number of servers.

Table II summarizes the peak interference factors ob-
served for each number of servers. As we can see, the
number of servers does not influence the interference factor
much.

Increasing the number of servers does not affect the
relative performance degradation generated by cross-
application interference.

One could argue that this result would not be true for
small applications that cannot get full parallelism from the
maximum number of storage servers. Yet as we build larger
machines, the number of storage servers tends to get smaller
relative to the number of computation nodes, and we tend to
run larger applications that become quickly limited by this
small number of servers.

5) Influence of targeted storage servers: In our previous
set of experiments, both applications were writing to all

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

12 PVFS servers
6+6 PVFS servers

(a) HDD, sync ON

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

-15 -10 -5 0 5 10 15

W
ri
te

 T
im

e
 (

s
)

dt (s)

12 PVFS servers
6+6 PVFS servers

(b) RAM

Figure 7. Two applications of the same size (480 cores each) write 64 MB
per process using a contiguous pattern. We show the ∆−graph when both
applications use the same set of PVFS servers (12 PVFS servers) and when
each application targets different set of PVFS servers (6+6 PVFS servers)
for the two different storage backends.

servers available. In this section, we split the 12 PVFS
servers into two groups so that each application targets a
different group of servers. Our idea is to remove the servers
and disks from the possible points of contention, leaving
only the network as a shared component between the two
applications.

Figure 7 shows the results for two different storage
backends. As expected, using 2× fewer servers decreases
the performance of a single application.

The behavior with respect to the interference is more in-
teresting, however. We observe that making each application
target a different set of servers removes the interference.
In some cases, the interference observed under contention
for all 12 servers leads to a higher write time than does
using 6 separate servers for each application. This result
would motivate approaches that detect potential congestion
and partition the storage space across applications instead
of letting applications interfere.

Again, the unfairness observed in Figure 7(a) when both
applications target all servers is eliminated when they access
different sets of servers.

Making distinct applications target distinct sets of
servers is a valid solution to at least control if not
mitigate the level of interference.

6) Influence of the data distribution policy: Data files
are distributed across PVFS servers in a round-robin fashion
with a predefined stripe size. Changing this stripe size can
have a significant impact on the resulting performance.
Hence we wanted to check its influence on the interference
as well.

Figure 8 illustrates the interference pattern with stripe
sizes of 64 KB, 128 KB, and 256 KB for a PVFS deployment
with disk and synchronization enabled (Figure 8(a)) and
disabled (Figure 8(b)). Note that 64 KB is the default stripe
size and that each application writes 64 MB per process in
a strided pattern with 256 KB of blocks.

A stripe sizes higher than the default one leads to signifi-
cant performance improvements for both cases. However, the

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

-600 -400 -200 0 200 400 600

W
ri
te

 T
im

e
 (

s
)

dt (s)

64 KB(default)
128 KB
256 KB

(a) Sync ON

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

-40 -30 -20 -10 0 10 20 30 40

W
ri
te

 T
im

e
 (

s
)

dt (s)

64 KB(default)
128 KB
256 KB

(b) Sync OFF

Figure 8. Two applications of the same size (480 cores each) write 64
MB of data to the PVFS using a strided pattern, with different stripe sizes
on the server side. Synchronization is enabled in (a), and disabled in (b).

interference seems to disappear when using a larger stripe
size with synchronization turned off. We hypothesize that
this lower interference stems from the smaller number of
servers that each request is striped across. When a large
request is issued by a client, this request is split into smaller
requests sent in parallel to several servers. The operation
completes only when all these servers have treated their
part of the initial request. Hence, any slowdown experienced
by a single server as a result of contention leads to a
global slowdown for the entire operation. Provided that two
servers decide to serve requests from different applications
in a different order, both applications will suffer from a
slowdown observed in servers that have not prioritized their
request.

Here each 256 KB request is striped across 4 servers for
the default stripe size of 64 KB. This is reduced to 2 servers
with a 128 KB stripe size and to 1 with a 256 KB stripe
size. Hence, we see the performance improvement for both
cases and the removal of I/O interference for the disabled
sync case. We believe that interference still exists for the
other scenario since disk is still an active component and
contributing to the I/O interference.

We confirm that making all servers treat requests from
distinct applications in the same order, as done in [3],
is an appropriate way of mitigating I/O interference.

7) Influence of the request size: Similarly to the stripe
size in the file system, the original request size in ap-
plications has an impact on I/O performance. Figure 9
illustrates the interference patterns when each application
writes 64 MB in a strided pattern with a block sizes of
64 KB, 128 KB, 256 KB, and 512 KB. The stripe size in
PVFS is set to the default of 64 KB.

The best performance is achieved for small block sizes
when synchronization is enabled (Figure 9(a)), whereas it
is achieved with large block sizes when synchronization is
disabled (Figure 9(b)).

While the interference pattern shows a fair, proportional
sharing of resources for all block sizes when synchronization
is enabled (symmetric, triangular figure), when synchro-

 300

 400

 500

 600

 700

 800

 900

 1000

-600 -400 -200 0 200 400 600

W
ri
te

 T
im

e
 (

s
)

dt (s)

64 KB
128 KB
256 KB
512 KB

(a) Sync ON

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

64 KB
128 KB
256 KB
512 KB

(b) Sync OFF

Figure 9. Two applications of the same size (480 cores each) write 64 MB
of data to the PVFS using a strided pattern with a block sizes of 64, 128,
256 and 512 KB. Synchronization is enabled in (a) and disabled in (b).
These graphs show the write time for the application (for brevity, only 1
application is shown since both applications have the same size) depending
on the block size used and on dt.

nization is disabled the interference pattern disappears for
block sizes of 64 and 128 KB. This result is in line with
our observations made in Section IV-A6 and the fact that
such request sizes have fewer servers involved in each
I/O operations. Yet while these small request sizes remove
the interference, they are far from optimal for a single
application.

The fact that no interference is observed between two
applications does not mean that optimal performance
is achieved. Our experiments show that, while some
request sizes allow cross-application interference to be
mitigated because clients interact with fewer servers for
each request, these block sizes remain far from optimal
from a single-application perspective.

Following this observation, we warn any researcher
proposing solutions to the I/O interference that these solu-
tions should be validated in configurations that are already
as good as possible, if not optimal, for a single application
alone. Indeed one can claim that a solution removes the
interference, while much higher performance could actually
be obtained from each application individually by better
optimizing their access patterns.

B. Unexpected behaviors: a flow-control issue

Some of the results of the previous section remain unex-
plained, such as the unfairness of some scenarios, with the
application that starts first getting better performance than
the one starting second.

1) The Incast issue: An unfair behavior results from a
component that adapts to the workload over time. Since
PVFS does not implement any particular scheduling mech-
anism at the server side, there is no reason to think one
flow of requests from an application would be prioritized
over another. The prioritization of one flow over another
cannot result from the backend storage device either, since
this storage device sees only serial accesses from a single
program: the PVFS server. Hence we suspected that such
unfair behaviors stem from the network.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

T
C

P
 W

in
d
o
w

 s
iz

e

Request No

(a) Independent run

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800

T
C

P
 W

in
d
o
w

 s
iz

e

Request No

(b) Interfering

Figure 10. TCP windows sizes of each request during the 64 MB
contiguous data write from a client to the server (a) when the application is
running independently and (b) interfering with the other application, which
also has same size (480 cores each) and started at the same time (dt=0).

To confirm this hypothesis, we reran the experiment
presented in Figure 2(a), in which two applications of 480
cores each write 64 MB per process in a contiguous manner,
in a PVFS file system consisting of 12 servers. We examined
more closely the TCP packets exchanged between a client
of either application and a PVFS server, using tcpdump.

Figure 10(a) shows the evolution of the TCP window size
for the sequence of requests issued by one client to one
server, when an application runs alone. Figure 10(b) shows
the evolution of the TCP window size when the application
is interfering with another one. As we can see, the behavior
is similar except for the fact that, under contention, the
window size drops to nearly 0, making it difficult for the
client to eventually send all its data.

The collapse of the TCP window size as a result of
contention was shown by Phanishayee et al. [17], who
termed it the “Incast problem.” When many clients access
to a server, the TCP congestion control mechanism at this
server forces the window size to drop in all its opened
sockets, leading to an important loss of performance.

Note that this phenomenon does not stem from the net-
work alone (we have seen, by splitting the set of servers into
two groups, that the network is not a point of contention).
It comes from the interplay between the network and the
disks, as well as the lack of flow control mechanism in Trove,
the component of PVFS that forwards requests from sockets
down to the storage devices. Because disks are slow, Trove
cannot keep up with the flow of incoming requests and hence
relies on the TCP congestion control mechanism to limit the
flow the requests from all clients.

The fact that the Incast problem appeared only with
HDD and synchronization enabled, but not with RAM
or SSD, proves that this type of interference results
from the interplay between several components of the
I/O path. What appears to be a network congestion
issue can actually stem from bad flow-control induced
by slow backend storage devices.

2) From Incast to unfairness: This Incast issue explains
many of the results presented in the previous section, starting

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
C

P
 W

in
d
o
w

 s
iz

e
(x

2
0
4
8
 b

y
te

s
)

P
ro

g
re

s
s
(%

)

Time(s)

App A-WindowSize
App A-progress

(a) Application A

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50
 0

 20

 40

 60

 80

 100

T
C

P
 W

in
d

o
w

 s
iz

e
(x

2
0

4
8

 b
y
te

s
)

P
ro

g
re

s
s
(%

)

Time(s)

App B-WindowSize
App B-progress

(b) Application B

Figure 11. TCP windows sizes and progress of the data transfer from one
client of each application and one of the servers.

with the unfairness observed in some scenarios. Figure 11
shows the behavior of two applications, one of which starts
10 seconds after the other. We plot the TCP window size and
the progress of the I/O transfer to this server as a function
of time, for one client of each application. Whereas the first
application starts seeing a slowdown of its progress at around
90 percent, the slowdown can be observed at 40 percent
for the second application; indeed, the window size hardly
manages to get back to a high value.

The appearance of unfair behavior as a result of Incast
is a good way to evaluate the conditions that cause Incast
to appear. For example, Figure 12 shows the interference
behavior when running different numbers of clients. An
interesting observation is that while the unfair behavior
benefiting the first application is clear when using 960 or
704 clients in total, the trend seems to reverse at smaller
client counts (256 to 512 clients), where the first application
is more impacted than the second one.

We hypothesize the following explanation. At large client
counts, the TCP window size of the second application
immediately collapses as a result of contention, allowing the
first application to complete seemingly without contention.
At intermediate client counts, the TCP window size is
reduced in both applications but does not collapse. Thus
the first application is impacted as well. At small process
counts, the servers are able to handle all the requests without
having to shrink the window size. The interference observed
becomes that of the backend storage devices.

As the number of clients increases, we are more likely
to observe degenerated flow-control issues as a result
of the file system not being able to handle the load.

3) Explanation of counterintuitive results from a flow-
control perspective: The interplay between components re-
sulting in a bad flow control can explain both the intuitive
and counterintuitive results obtained previously.

Using one core per node instead of all cores to perform
I/O, as done in Section IV-A2, reduces the number of
sockets involved in an application’s I/O phase and forces
a serialization of requests at the level of each node. This
constrains the rate at which each single node can write and

 0

 10

 20

 30

 40

 50

 60

 70

 80

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

960 clients (default)
704 clients
512 clients
352 clients
256 clients
128 clients

Figure 12. ∆-graph illustrating the appearance of the Incast problem as we
increase the number of clients. Each application writes 64 MB per process
in a contiguous pattern. PVFS is deployed on 12 servers with hard disks
as backend, synchronization enabled. The number of clients shown is the
total number of clients.

therefore prevents the Incast problem from happening.
Using a low-bandwidth network, as done in Sec-

tion IV-A3 with a 1 G network instead of a 10 G, also
mitigates the Incast problem by constraining the rate at
which each client can send requests. By forcing a reduction
of bandwidth at the source, the rate of requests becomes
sustainable to the backend storage devices and thus the TCP
window size does not collapse.

Splitting the servers into two groups completely pre-
vents the interference from happening (Figure 7(a)) because
a server has to interact with 2× fewer clients, therefore
maintaining flow control on 2× fewer links.

V. RELATED WORK

As we move toward the exascale era, performance
variability in HPC systems remains a challenge. Cross-
application I/O interference is one of the major causes of
this performance variability. A large body of studies have
sought to eliminate cross-application I/O interference by
focusing on possible sources of this interference. For exam-
ple, Zhou et al. [18] present an I/O-aware batch scheduler
that addresses the interference problem at the level of batch
scheduling. The batch scheduler schedules and coordinates
the I/O requests on the fly by considering the system state
and I/O activities. Gainaru et al. [19] show the performance
degradation due to I/O congestion and propose a new sched-
uler that tries to eliminate this congestion by coordinating
the I/O requests depending on the application past behaviors
and system characteristics. Boito et al. [11] propose AGIOS,
an I/O scheduling library for parallel file systems. AGIOS
incorporates the applications’ access pattern information into
the scheduler based on the traces generated by the scheduler
itself and uses this information to coordinate the I/O requests
in order to prevent congestion to the file system. As we
observed, however, although scheduling-level solutions can
help control the level of interference, it does not always lead
to improved performance at the same time.

Some works focus on finding solutions at the disk level,
the lowest level that I/O interference can occur in the I/O
stack. Zhang and Jiang [20] point out that frequent disk
head seeks, because of the access interference on each I/O

node, can seriously hurt the performance of a system. They
propose a data replication scheme, InterferenceRemoval, to
eliminate I/O interference. InterferenceRemoval tries to limit
the number of the I/O requests served by each I/O node.
Although this solution is in parallel with the Incast problem
we presented in our work, we observe that it is not present
for only a single source (e.g., disk) of interference.

Some research efforts consider network contention as the
major contributor to the I/O interference. Bhatele et al. [21]
investigated the performance variability in Cray machines
and found out that the interference of multiple jobs that
share the same network links is the primary factor for high
performance variability. Jokanovic et al. [22] introduce the
concept of quiet neighborhoods, a job allocation technique
based on the job sizes. This technique helps control the
fragmentation in the HPC systems and reduces the number
of jobs sharing the network, with the aim of minimizing the
interference.

Some works study the interference problem with a special
emphasis on a single factor. Kuo et al. [23] investigated
the influence of the file access pattern on the degree of
interference observed. They found out that chunk size can
determine the degree of interference and that the interference
effect induced by various access patterns in the HPC system
can slow the applications by a factor of 5. Our work is
different in the targeted objective, since we try to identify
all possible sources of interference under various scenarios,
as well as their interplay.

Although indeed important, the aforementioned studies
–by focusing only on a single potential source– do not
necessarily provide a complete solution for the interference
problem. In contrast, we consider the possible sources of
interference together and conduct an extensive experimental
study. Thus, our work can provide useful insights into
the I/O interference phenomenon. Furthermore, it can help
researchers tackle the interference problem across all com-
ponents of the I/O system.

VI. CONCLUSION AND FUTURE WORK

Cross-application interference in HPC systems is an im-
portant problem that can affect the efficiency of an entire
machine. This problem will be even more important with
exascale machines that will allow more applications to run
concurrently. In this work, we investigated the potential
root causes of I/O interference. Our findings demonstrate
that interference results from the interplay between several
components in the I/O stack. For instance, we observe
that the impact of the request size on interference varies
depending on the configuration of components in the I/O
path. Our findings also illustrate many counter-intuitive
results besides the intuitive ones. For example, we show
that using a low-bandwidth network in some scenarios can
eliminate the interference problem, which stems from the
interplay between the different points of contention. Hence,

we believe that researchers must understand the tradeoffs
between several components in the I/O stack and must
address the interference problem in its entirety, rather than
focusing on any single component.

Several avenues remain open for future work. One is to
expand our experimental study by looking at other plat-
forms than Grid’5000, other file systems (e.g., Lustre), other
workload types (e.g., read-only) and other types of network
(e.g., InfiniBand). As the ultimate goal, by leveraging the
knowledge gained in our work, we plan to design event-
driven simulators that can accurately model the components
subject to interference.

ACKNOWLEDGMENT

We thank Rob Latham and Phil Carns from Argonne National
Laboratory for their valuable technical insights into PVFS, and Gail
Pieper for her comments on our paper. This work was done in the
framework of a collaboration between the KerData joint Inria -
ENS Rennes - Insa Rennes team and Argonne National Laboratory
within the Joint Laboratory for Extreme-Scale Computing, and the
Data@Exascale associate team. The experiments presented in this
paper were carried out using the Grid5000 testbed, supported by
a scientific interest group hosted by Inria and including CNRS,
RENATER, and several universities as well as other organizations
(see http://www.grid5000.fr/). This material is based upon work
supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, under contract
number DE-AC02-06CH11357.

REFERENCES

[1] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim,
“CALCioM: Mitigating I/O interference in HPC systems
through cross-application coordination,” in Proceedings of
the IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’14), Phoenix, AZ, USA, May 2014.
[Online]. Available: http://hal.inria.fr/hal-00916091

[2] X. Zhang, K. Davis, and S. Jiang, “IOrchestrator: Improving
the Performance of Multi-Node I/O Systems via Inter-
Server Coordination,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–11. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.30

[3] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang,
“Server-Side I/O Coordination for Parallel File Systems,”
in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’11. New York, NY, USA: ACM, 2011, pp.
17:1–17:11. [Online]. Available: http://doi.acm.org/10.1145/
2063384.2063407

[4] Y. Qian, E. Barton, T. Wang, N. Puntambekar, and
A. Dilger, “A Novel Network Request Scheduler for a
Large Scale Storage System,” Computer Science - Research
and Development, vol. 23, pp. 143–148, 2009. [Online].
Available: http://dx.doi.org/10.1007/s00450-009-0073-9

[5] A. Lebre, G. Huard, Y. Denneulin, and P. Sowa, “I/O Schedul-
ing Service for Multi-Application Clusters,” in in Proceedings
of IEEE Cluster 2006, 2006.

[6] A. Batsakis, R. Burns, A. Kanevsky, J. Lentini, and
T. Talpey, “CA-NFS: A Congestion-Aware Network File
System,” in Proceedings of the 7th conference on File and
storage technologies, ser. FAST ’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 99–110. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1525908.1525916

[7] Y. Tanimura, R. Filgueira, I. Kojima, and M. Atkinson,
“Poster: Reservation-Based I/O Performance Guarantee for
MPI-IO Applications Using Shared Storage Systems,” in High
Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, 2012, pp. 1384–1384.

[8] INRIA, “Grid’5000: http://www.grid5000.fr.”
[9] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kor-

denbrock, K. Schwan, and M. Wolf, “Managing Variability
in the IO Performance of Petascale Storage Systems,” in
Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10. Washington, DC, USA: IEEE Com-
puter Society, 2010, pp. 1–12.

[10] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf,
“Damaris: How to Efficiently Leverage Multicore Parallelism
to Achieve Scalable, Jitter-Free I/O,” in Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, Sept.
2012, pp. 155–163.

[11] F. Zanon Boito, R. Kassick, P. O. A. Navaux, and Y. Den-
neulin, “AGIOS: Application-Guided I/O Scheduling for Par-
allel File Systems,” in Parallel and Distributed Systems
(ICPADS), 2013 International Conference on. IEEE, 2013,
pp. 43–50.

[12] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham,
R. Ross, L. Ward, and P. Sadayappan, “Scalable I/O Forward-
ing Framework for High-Performance Computing Systems,”
in Cluster Computing and Workshops, 2009. CLUSTER ’09.
IEEE International Conference on, Sept. 2009, pp. 1–10.

[13] V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov,
M. Papka, R. Ross, and K. Yoshii, “Accelerating I/O For-
warding in IBM Blue Gene/P Systems,” in 2010 International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Nov. 2010, pp. 1–10.

[14] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones,
A. Knüpfer, K. Iskra, R. Ross, W. E. Nagel, and
S. Poole, “Enabling Event Tracing at Leadership-Class Scale
Through I/O Forwarding Middleware,” in Proceedings of the
21st international symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’12. New York,
NY, USA: ACM, 2012, pp. 49–60. [Online]. Available:
http://doi.acm.org/10.1145/2287076.2287085

[15] H. Shan and J. Shalf, “Using IOR to Analyze the I/O Perfor-
mance for HPC Platforms,” in Cray User Group Conference
2007, Seattle, WA, USA, 2007.

[16] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur,
“PVFS: a Parallel File System for Linux Clusters,” in Pro-
ceedings of the 4th annual Linux Showcase & Conference -
Volume 4. Berkeley, CA, USA: USENIX Association, 2000.

[17] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and S. Seshan, “Measurement
and Analysis of TCP Throughput Collapse in Cluster-Based
Storage Systems,” in FAST, vol. 8, 2008, pp. 1–14.

[18] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang,
and Z. Lan, “I/O-Aware Batch Scheduling for Petascale
Computing Systems,” in IEEE International Conference on
Cluster Computing, 2015.

[19] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and
M. Snir, “Scheduling the I/O of HPC Applications Under

Congestion,” in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2015, pp. 1013–1022.

[20] X. Zhang and S. Jiang, “InterferenceRemoval: Removing
Interference of Disk Access for MPI Programs through Data
Replication,” in Proceedings of the 24th ACM International
Conference on Supercomputing. ACM, 2010, pp. 223–232.

[21] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There
Goes the Neighborhood: Performance Degradation due to
Nearby Jobs,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis. ACM, 2013, p. 41.

[22] A. Jokanovic, J. Sancho, G. Rodriguez, A. Lucero,
C. Minkenberg, and J. Labarta, “Quiet neighborhoods: Key to
protect job performance predictability,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
May 2015, pp. 449–459.

[23] C.-S. Kuo, A. Shah, A. Nomura, S. Matsuoka, and F. Wolf,
“How File Access Patterns Influence Interference among
Cluster Applications,” in IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2014, pp. 185–193.

